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The dynamics of multi-component media has an important application in 
the analysis of building foundations, in seismology, in problems of 
sound-proofing, in studies of the motion of pulp, aerated oil, etc. 

This theory was developed by Frenkel’ [ 1 ] , Leibenzon [ 2 I , Biot [ 3, 
4 1, Rakhmatulin [ 5 I, Zwikker and Kosten [ 6 I, and others. 

Reference [ 7 1 treats the propagation of elastic waves in an iso- 
tropic two-component medium, one component of which is ideally elastic, 
while the other is a viscous compressible fluid. It has been shown that 
in this case the equations of Biot can be considered the most general 
equations of motion. 

On the basis of Blot’s equations, this paper is concerned with the 

solution of the problem of the propagation of plane sound waves in the 
above-mentioned two-component medium with a stratified structure. 
General expressions for the reflection and transmission coefficients are 
obtained for an arbitrary number of strata. The particular case of a 
single stratum is studied in greater detail. 

The two-component medium is further treated as a porous medium with 

an elastic skeleton [matrix 1 and pores which are filled with a viscous 
compressible fluid. 

1. Fundamental equations. The relations between the stress and 

strain tensors for isotropic porous media, as established in [3 I, can 
be written as 

Pik = h06ik + 2puik + Qdik, S = QB+RE 

0 = div u, E = div v 
(1.1) 
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Here Pi, is the stress tensor in the elastic skeleton; S is a force 
acting on the fluid referred to a unit cross-sectional area of the 
porous medium; A, p, Q, and R are moduli characterizing the elasticity 
of the porous medium; uik is the strain tensor of the skeleton; u and v 
are vectors of the mean displacements of the skeleton and the fluid at a 
given point of the medium; 6ik is the Kronecker delta, equal to unity 
for i = k, and equal to zero for i f k. 

Biot’s equations have the form 

BP.. 
pll$ + Pl2@$ +r, &%-vi, = <, p11= (1 --m)Ps--P12 11.21 

a%+ &Ii 

PlZ atz t pgam +b$(vi-Ui) = gg 
i 

p22=mpt--pp,z(b='$) 

Here plz < 0 is the dynamic coupling coefficient between the skeleton 
and the fluid; p, is the density of the skeleton; pf is the density of 
the fluid; k is the permeability coefficient, proportional to the 
porosity and the square of the pore diameter. Let us break up the dis- 
placement vectors into their irrotational and solenoidal components 

u = uI -t Utr rot ut = 0, div uf = 0 

v = vz + Vfr rot VI = 0, div vt = 0 (1‘3) 

When taking Equation (1.2) into account, (1.1) and (1.3) can be re- 
duced to the following system: 

pll 2 + Pl2 z + b $ (uz - VI) = (A + 2~) V*ul + Qv2vz 
a%+ PVz 

PIZ ati + ~22 ata + b $ (v - ~1) = Qo”ud- RV% 

a% 
PII ata + ~12 ‘2 i- b; (ut - vtf = @is% 

(1.4) 

8ll, 
Pl2 atz i- p22 w @” + b 4 (vt - ut) = 0 

In the case of monochromatic waves with a frequency o, the first two 
equations of (l.r$), with the aid of the linear transformations 

q = Ul + u2, Vf = Mm + M2U2 (1.5) 
and after the introduction of the notation 

PI1 
Yli = - * 

PI% Pzz 
P 

712 = 7' Y22 = - 7 
P 

p = PII + p22 + 2702 

all=w21r, Q R 
Ii ’ 012 = n , (323 =a, H=h+2p+R+2Q, G=$ 

(W 
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V’ul + k,?u, = 0, yPuz + kg2u2 = 0 
L 
k12= C,(;)‘, kz2= ia(, 

Here 5, and 5, are the roots of the quadratic equation 

‘Ihe transformation coefficients in (1.5) are determined by the 
formulas 

M, = - -flZ + 51Q2 + iT 
T22 - 51522 + i-r ' 

M2 = -T12 + 525E + iT 

yz2 -5252.2 + ir ' 
p" 

PO 

Equations (1.6) describe the propagation of longitudinal waves of the 
first and second type. 

‘Ihe second two equations of (1.4), which describe the propagation of 
the transverse wave, reduce to the form 

fit = Mtut, v2uf + kt2ut = 0 (2.7) 

41, = 
- 712 + iY 

rz2i-lr ' 
At2 = PI+ M*P- 

IJ 
02> Pl = PI1 + Pl2 1'2 = p22 + p12 

Under the conditions of y >> 1, which corresponds to the case of a 
low frequency, it can be easily shown [ 7 1 that the damping coefficients 
of the first type of the longitudinal and the transverse waves are pro- 
portional to the square of the frequency, while those of the longi- 
tudinal waves of the second type are proportional to the square root of 
the frequency. Ihis implies that the longitudinal wave of the second 
type disappears for all practical purposes. 

If y << 1, one can neglect the effect of viscosity. One should keep 
in mind, however, that w must remain smaller than that frequency at 
which the wavelength is comparable to the dimensions of the pores. 

2. Reflection and transmission coefficients for an arbi- 
trary number of strata. l'he method of determining the reflection 

and transmission coefficients will be based on the use of recurrence 
formulas, which relate the wave amplitudes in neighboring strata [8,9 I. 

Let us consider an arbitrary layer n. We denote its thickness by d 
and choose a coordinate system as shown in Fig. 1. 

Because of the reflections from the boundaries, there will exist in 
the studied layer a system of transverse and both types of longitudinal 
waves, propagating in the positive and negative y-direction. lhe ex- 
pressions for the potential of the longitudinal and transverse waves in 



Fig. 1. 
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the layer can be then written in the form 

‘pr = ((pl’eiaV + cpl”e-iaU) ei(os--ot) q = v/&z - 42 

‘p2 = (‘p2’&QY + ‘p2”e-W) &ox-wt), ~=l/k22-crz 

I# = ($‘eisY + q$‘e-isY) ei(ax--ot), 6 = ‘I/k*’ - cs2 

Here u is the component of the wave vector along 
the x-axis, which is equal for all types of waves 
and all layers. 

‘Ihe velocity components of the skeleton particles 
duz/at, $,/at and of the fluid & /at at any point 
of a layer are found by means of t h e formulas. 

which follow from (1.3), (1.5), and (1.7). 

‘Ihe stress tensor components in the skeleton P 
1 

fluid S are determined from the relations (1.1). .IXkr~yo~ds~~u?let 

i au, 
us = xx, 

i au, 
UY=;att 

i au, 
v, = --, 

i au, 
0 at vu= -- 

0 at 

Let us denote by G(n) a column matrix, whose elements, from top to 
bottom, will be the values of these quantities 

(2.1) 

aux au,, 
at’ f dt ’ 

P YY, Q +lRM,s’ 
given at the upper boundary of the nth layer (at y = 4). The results of 
the computation of these quantities can be written down in the form of a 
matrix equation 

G(n) = A@ (2.2) 

Here @ is a column matrix with the following elements (top to bottom): 

‘PI’ s cprn, ‘PI’ - rplS, 92’ + (p2”, ‘p2’ - (p!zs, 9’ - $“, $’ + $” 

‘Ihe elements of A, a quadratic matrix of the sixth order, can be, if 

necessary, written out easily. 

If in (2.2) d is replaced by zero, we will obtain the values of the 
quantities (2.1) at the lower boundary of the nth layer. Since all these 
quantities remain unchanged as they cross over a boundary, they will 
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also have the same values at the upper boundary of the (n -.l)st layer. 
Thus, we have 

G (n - 1) = A@, or 0 = A,-lG (n - 1) (2.3) 

Substitution of (2.3) into (2.2) yields a recurrence relation which 
relates the values of the quantities of (2.1) in neighboring layers: 

G (n) = CG (n - 1) (2.4) 

Here C will be the product of matrix A and matrix AO1. If the 
quantities of (2.1) are given at the boundary between the first and the 
second medium, one can find them also at the boundary between the nth 
and the (n + 1)st layers by means of a successive application of Formula 
(2.4): 

G (n) = IIG (1) (2.5) 

Here II is the product of the C-matrices for all layers. 

Assume that the first and the (n + 1)st media are fluid. 

The conditions at the boundary between the nth and the (n + 1)st 
medium have the form 

pk) z - (1 - m(n)) p(n+l), S’“’ = _ &n)p(n+l) , 

p = 0 
a*, (n+1) 

XY , j(n) == 2-&-- (2.6) 

(‘lhe upper index denotes the number of the layer to which the given 
quantity is referred). The first two conditions consist of the fact that 
the skeleton and the fluid in the pores of the nth layer are under the 
same external pressure P ln+ ‘I. The third condition expresses the ab- 
sence of tangential stresses, while the fourth condition denotes the 

continuity of fluid flow across the boundary. 

After writing out the equations for PkC’, PLY’, S( “) , j’ n, and then 

eliminating from them the derivatives duz”‘/Jt, du,“‘/dt and consider- 

ing that p(“) = pif) = 0, j(l) = 
XY 

6’~:~) /at, we obtain 

P,‘,“’ = A,$“’ + A,P,;’ + AS”’ + A4av:‘, (2.7) 

j’“’ = BJ’“’ + B,P,~‘+ B,S’1’ + B, f!$ 
Now we find the reflection and transmission coefficients for the 

entire system of layers. We denote the total thickness of all layers by 
H. ‘lhe origin of the coordinate system is placed at the lower boundary 



The reflection of sound raves 1613 

of the first layer. We assume that the sound wave enters at an angle 

O(“+ ‘) from a fluid medium at (n + 1). The expression for the total 
sound potential of the incident and the reflected waves in this medium 
has the form 

cp(n+l) = [@&y--H) + (p”e-iv(y-H)] ei(ox--of), y = l/(/@+1))2 - (9 

In the fluid on the other side of the layer system there will be only 
the previous sound wave 

(p(1) = cp"eixU&(m--of), x = J(/q - 02 

Using the formulas 

Lb 22, 
at . 

P = ipocp 

which hold for a fluid medium, and taking into account (2.6), we obtain 

P (n) _ 
LJU - - i (1 - &Q) p(n+Oo (cp’ + cp”), p (1) = - 

Scn) = - i~(n)p(n+l)~ (rp’ + rp”) , $lY-_ _ 
i (1 - m(2)) p(‘)q’” 

i~(2)pll)~(p”’ (2.8) 
j(n) = iv (cp’ - cp”), dv,(l) / dt = ix(p”I 

(the general factor e i(ox- at) is omitted for brevity). 

Uy substituting (2.8) into (2.7) we obtain two equations for the de- 
termination of the reflection and transmission coefficients. From these 
we find 

W.-C _Z,,;:“f:; 
v’ n 

D z.z ,;$; = 2 (1 - m@) - ?YP)Al) !zz(1) (2.9) 

rp’ [(I -my ‘42 + m(2)/4s] Z(l) - “& Z + Zh+‘) 

Here 

&-(I- m(n) - MWAI) [(i - mt2)) Ba + ,(2)B9] Z(l) - B4 

- [(I - In@)) ‘42 + &)Asl z(l) - A 
m(n)& 

4 

z(1) __ P(l)0 , plS1) _ P(*+l)o _-- 
x V 

The quantity 2 can be treated as an entrance impedance of the layer 
system, Z(‘)and Z’“+ ‘) as the impedances of the fluid in the first and 

the (n + l)st layers, respectively. 

3. Reflection from a porous layer. Let us study now the re- 
flection of a sound wave from a single porous layer 2, separating two 
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fluid media i and 3, Fig. 2. 

Y 

rc_ 

V!e assume, as above, that the 
wave is incident onto the layer from 

3 the upper medium. The reflection and 
transmission coefficients can be 

d 2 
found from the general formulas 

I (2.91, where now one should use n=Z. 
In this case, matrix-II coincides 

Fig. 2. with matrix C. If we limit ourselves 
to the case of normal wave incidence 

then we find the following values for the coefficients A,, . . . , A,, B,, 
. . . ) B,: 

A,= I 
iv (Q + RMz) 

(K,I,rsin Pr - KJ,sin PJ 

A, = -i (L,, I’,r sin P, cos Pz - I’, sin P, cos P,) 

A3 = - N (Q _‘t RM2j (K,lT,r sin P, cos P, - li,rl sin P, cos P,) 

A, = -&Xl, sin P, sin P,, 231 = N ~~~1~~~~ (cos P, - cos P,) 

B, = & [(r? +~,,2r,29) sinP,sin Pa - zd,,r,r,(f --- co~P,cos P,)1 

Jj’, r= - iq 
N (Q + flM2) Kn 

[(Ii&Y,2 + Klr22Llpr2) sin P, fin P, - 

- qr, (K, + LJ~) ('1 - cos P, ~0~ P,)j 

Here c1 and c2 are the velocities of the longitudinal waves of the 
first and second type. 

‘Ihe entrance impedance of the layer and the transmission coefficient 
take the form 

6 = -& sin P, cos P, + -& sin P, Cos P, -}- -&- sin P, sin P, 

8=i(~+L+~sinP,sinP,+&(l-cosP1cosPZ)+ 

+S(& 
sin Pz cos PI + + sin PI cos P2 

> (3.1) z 
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where 

1 
-= 
21 

~+Y+Q~~M), +~[-(1-7n)L,,+ mK1 -1 
2 Q+RMa 

The quantities 2, and 2, can be regarded as “effective” impedances of 
the skeleton and the fluid in the pores. If we neglect the viscosity of 
the fluid (JJ = 0) and the coupling coefficients (yzz = 0, aI2 = O), then 

we obtain 

hi and c2a are sound velocities in the skeleton and in the fluid), i.e. 
Z, and Z2 go over into the wave impedances of the elastic and the fluid 
components for uncoupled vibrations. ‘Ihe expression for the impedance of 
the separation boundary of a fluid and a half-space filled with a porous 
medium can be obtained from (3.1) with the aid of a limiting process, 
which corresponds to an unbounded increase of the thickness of the layer 
in the negative direction of the y-axis (d+ - -). Since 

sin Ic,d = sin (md) cash (bid) i- i cos (aid) sinh (~I~), 

eos FErd = cos (cud) cash {~ld~ - i sin (aid) sinh {old), 

then as d + - do sin P, and cos PI grow without limit, at 
equation cos P, E i sin P, is satisfied, and analogously 
Formula (3.1) then yields 

1 
-=_&+& 
z 

kr = al + $1 

which time the 
cos Pz = isinP2. 

(3.2) 

i.e. the impedance of the boundary of a half-space filled with a porous 
medium will be the result of a “parallel” connection of the “effective” 
impedances of the elastic and the fluid components of the medium, 

Let us study the case of complete reflection from a porous layer of a 
sound wave with normal incidence. This case takes place under the condi- 
tion I) = 0 which, according to (3.1), leads to the equation 

2, sin PI + 22 sin Pa = 0 (3.3) 

By neglecting the viscosity of the fluid in the pores and solving 
this equation for the values of the parameters of the medium given in 

141 

Qll = 0.610, C&2 = 0.305, G12 = 0.043, Tll = 0.500, Tzz = 0.500, 71.2 = 0 (3.4) 

we obtain the following values for the thicknesses of the sound-traus- 
mitting layers of different porosity: 
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m= 0.5 0.6 0.7 0.8 
d = 0.40hl 0.43k.l 0.46hl 0.48hl 

Here A., is the length of the longitudinal wave of the first type. 

Assume now that on both sides of the layer there is the same fluid 
(Z(l) = Zt3)). From the condition W = 0 we obtain the equation for the 
determination of the thickness of a completely “transparent” layer 2 - 
8” = 0 which, when (3.1) is considered, reduces to 

If z(1) satisfies the equation 

Equation (3.5) will yield cos (Pz - PI) = 1, and consequently 

d=+$-n 
1 2 

(n = 1,2,3, * . .) 

where A, is the length of the longitudinal wave of the second type. For 
the values of the parameters given in (3.4) we shall have d = 2.3 h In. 
It is not difficult to see that the reflection and transmission coeffi- 

cients satisfy the obvious equation 

jW/2+(Dj2=1 

which represents the law of conservation of energy. If the porosity 
the layer approaches zero and we assume that 
the basis of (3.1) 

@7 = (Z(l) - Zt3f) 2, + i (Z,Z - z(1) Z(3)) tapPI 

(29 + 2(31) Z1 + i (Z,a + Z(l) Z(3f) t81#~ ’ 

then .Z2 + bo, we obtain 

Z= 
z(1) + iz1 tan& 

zr + iz(lf IanPI 

z 

l 

of 
on 

n- 2ZQ) Z1 set PI 

u - (Z(l) + Z(3)) 21 + i (212 + zt’f Z(3)) taaP1 

which coincides with the known result for the case of a normal incidence 
of a wave onto a continuous elastic medium [9 1. 

In this limiting case Equation (3.5) takes on the form 

From this the thickness of the “transparent” one-component layer is 

d = 1/2h~n 

i.e. equal to an integral multiple of the half-wave. 

sin PI = 0 
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The author is grateful to V.L. German for his suggestion to study the 
above problems and his interest in the work. 
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